Ifm electronic lance un automate de sécurité deux-en-un avec câblage simplifié

Rédigé par  mercredi, 11 mai 2016 01:28

La particularité de l'automate programmable de sécurité SmartPLC d'ifm electronic est de combiner deux automates séparés dans un seul boîtier compact : un automate de sécurité avec deux unités centrales redondantes et un automate standard.

Le groupe allemand ifm electric a conçu SmartPLC, un automate programmable de sécurité dont la particularité est de combiner dans un seul boîtier compact (135,5x106,2x93 mm) deux automates séparés : un automate de sécurité avec deux unités centrales redondantes et un automate standard.

« Alors que l'un des deux automates solutionne des applications de sécurité jusqu'à SIL 3, PL e, le second fonctionne comme un automate standard ou une plateforme pour d'autres tâches. Comme les deux automates communiquent entre eux, il est possible de réaliser des systèmes de contrôle-commande entiers avec un seul SmartPLC et un câblage simplifié, y compris des fonctions de sécurité et de visualisation », indique-t-on chez ifm electronic. La société met également en avant une mise en service facile et rapide qui permet un gain de temps important.

De par sa flexibilité et son évolutivité, le Smart PLC d’ifm electronic peut être utilisé dans de multiples applications en tant que passerelle AS-i, commande de machines, système de visualisation, convertisseur de protocole, enregistreur de données, boîtier de contrôle intelligent, etc.

Dernière modification le mercredi, 11 mai 2016 01:31
Connectez-vous pour commenter

logo_80ans

20/11/2018 - 21/11/2018
Be 4.0
27/11/2018 - 27/11/2018
Automation Class Factory

Non classé
FAULHABER Spécialiste Systèmes d

Machines à décaper l’isolantLa technique moderne ne peut pas renoncer aux câbles. Pour pratiquement [...]

Pour communiquer sur vos produits,
Jean-Guillaume CANUET
Directeur de Publicité
jgcanuet@newscoregie.fr - 01 75 60 28 54
RAID

Redundant Array of Independent Disks, batterie redondante de disques durs indépendants. A la fin des années 1980, RAID signifiait “Redundant Array of Inexpensive Disks”, c’est-à-dire batterie redondante de disques économiques. C’était à l’époque où les gros disques d’ordinateurs étaient onéreux. Les temps ont changé et c’est la raison pour laquelle le terme Inexpensive a été remplacé par Independant. Le but des RAID est d’augmenter la performance ou de fournir une tolérance aux pannes. Développé à l’origine pour les systèmes de stockage, les Raid ont vu leurs applications s’élargir et sont désormais présents sur les PC. Le concept Raid peut être mis en œuvre avec un disque unique et à l’aide d’un logiciel spécialisé, mais les performances sont moindres qu’avec des Raid multi-disques, surtout lorsqu’il s’agit de restituer les données après une défaillance.
Raid améliore les performances des disques en interpénétrant les octets ou les groupes d’octets à travers plusieurs disques, de sorte qu’au moins deux disques sont en train de lire et d’écrire simultanément. La tolérance aux pannes est réalisée en utilisant la technique du disque miroir (duplication totale des données) comme dans RAID 1 ou en utilisant les bits de parité comme dans RAID 3 et RAID 5. Les bits de parité sont calculés en prenant un bit du disque 1 et en le combinant (fonction OU exclusif) avec un bit du disque 2, et en stockant le résultat sur le disque 3. Un disque défaillant peut être remplacé à chaud par un autre, le contrôleur RAID se charge de reconstituer les données perdues.

  • RAID 0. Les données sont réparties sur plusieurs disques de façon à améliorer la performance. Il n’y a pas de protection contre les pannes.
  • RAID 1. Les données sont toutes écrites en miroir sur deux disques distincts. Solution qui offre la meilleure fiabilité mais double le coût du stockage.
  • RAID 2. Les bits (plutôt que des octets ou des groupes d’octets) sont répartis sur plusieurs disques.
  • RAID 3. Les données sont réparties sur trois ou davantage de disques. Tous les disques travaillent en parallèle, ce qui assure une vitesse de transfert très élevée. Les bits de parité de parité permettent de reconstituer les données en cas de panne de l'un des disques physiques.
  • RAID 4. Similaire au Raid 3 mais chaque disque est géré indépendamment. Peu utilisé.
  • RAID 5. Le plus largement utilisé. Les données sont réparties sur trois ou davantage de disques afin d’augmenter les performances, et les bits de parité sont utilisés pour la tolérance aux pannes. Les bits de parité permettent de reconstituer les données en cas de panne de l'un des disques physiques.
  • RAID 6. Le plus fiable mais il est peu utilisé. Similaire à RAID 5, mais ici le contrôleur effectue les calculs de deux bits de parité différents, ou le même calcul sur deux sous-ensembles de données qui se chevauchent.
  • RAID 10. Combinaison de RAID 1 et RAID 0. RAID 0 est utilisé pour la performance et RAID 1 est utilisé pour la tolérance aux pannes.