La mesure 3D robotisée devient plus autonomie et flexible

Rédigé par  jeudi, 14 septembre 2017 13:03
En coopération avec le roboticien Kuka, Metrologic Group a développé une solution robotisée de mesure 3D associant un robot collaboratif, une plateforme autonome mobile, un scanner laser et un logiciel de pilotage capable de gérer à la fois la mesure 3D et le pilotage de la plateforme robotisée.
Lors du dernier salon Control qui s'est déroulé en mai dernier à Stuttgart, Metrologic Group, entreprise française basée à Meylan (38) et spécialisée dans les solutions logicielles dédiées à la mesure 3D, a franchi une étape supplémentaire dans la mesure 3D robotisée avec son système Metrolog X4 iRobot. Il s'agit d'une plateforme robotisée de mesure 3D mobile et autonome, capable de se déplacer sur la ligne de production là où les besoins en mesure et inspection 3D se font sentir.
 
Cette plateforme associe un robot collaboratif multiaxe iiwa développé par Kuka, positionné sur une plateforme robotisée mobile KMR elle aussi développée par le roboticien allemand, un dispositif de mesure 3D et la solution logicielle Metrolog X4 conçue par Metrologic Group. En plus de l'autonomie (le KMR se déplace de manière totalement autonome grâce au scanner laser embarqué) et de la maniabilité (la plateforme mobile peut effectuer des déplacements omnidirectionnels et des rotations à 360°) de cette solution de mesure 3D robotisée, l'originalité du Metrolog X4 i-Robot réside dans le fait que le logiciel Metrolog X4 de Metrologic Group gère à la fois toutes les fonctionnalités de mesure 3D du système et le pilotage intégral du robot collaboratif et de la plateforme mobile.
 
Le système de mesure 3D proprement dit est basé sur un scanner laser embarqué à très haute vitesse d'acquisition (un modèle Faro dans le cas de notre photo) au bout d'un cobot multiaxe qui fait office de simple outil porteur. Indépendante de la précision du robot (et donc du robot employé), la précision de la mesure 3D est assurée soit par une caméra de suivi séparée qui suit le boîtier du capteur laser équipé de led infrarouges de positionnement, soit par un système de laser tracker.
L'aéronautique et l'automobile sont les principales applications ciblées.
 
 
Dernière modification le jeudi, 14 septembre 2017 13:03
Connectez-vous pour commenter

logo_80ans

20/11/2018 - 21/11/2018
Be 4.0
27/11/2018 - 27/11/2018
Automation Class Factory

Non classé
FAULHABER Spécialiste Systèmes d

Moteurs pas à pas La structure robuste, la grande plage de régimes et la puissance exceptionnelle dans [...]

Pour communiquer sur vos produits,
Jean-Guillaume CANUET
Directeur de Publicité
jgcanuet@newscoregie.fr - 01 75 60 28 54
RAID

Redundant Array of Independent Disks, batterie redondante de disques durs indépendants. A la fin des années 1980, RAID signifiait “Redundant Array of Inexpensive Disks”, c’est-à-dire batterie redondante de disques économiques. C’était à l’époque où les gros disques d’ordinateurs étaient onéreux. Les temps ont changé et c’est la raison pour laquelle le terme Inexpensive a été remplacé par Independant. Le but des RAID est d’augmenter la performance ou de fournir une tolérance aux pannes. Développé à l’origine pour les systèmes de stockage, les Raid ont vu leurs applications s’élargir et sont désormais présents sur les PC. Le concept Raid peut être mis en œuvre avec un disque unique et à l’aide d’un logiciel spécialisé, mais les performances sont moindres qu’avec des Raid multi-disques, surtout lorsqu’il s’agit de restituer les données après une défaillance.
Raid améliore les performances des disques en interpénétrant les octets ou les groupes d’octets à travers plusieurs disques, de sorte qu’au moins deux disques sont en train de lire et d’écrire simultanément. La tolérance aux pannes est réalisée en utilisant la technique du disque miroir (duplication totale des données) comme dans RAID 1 ou en utilisant les bits de parité comme dans RAID 3 et RAID 5. Les bits de parité sont calculés en prenant un bit du disque 1 et en le combinant (fonction OU exclusif) avec un bit du disque 2, et en stockant le résultat sur le disque 3. Un disque défaillant peut être remplacé à chaud par un autre, le contrôleur RAID se charge de reconstituer les données perdues.

  • RAID 0. Les données sont réparties sur plusieurs disques de façon à améliorer la performance. Il n’y a pas de protection contre les pannes.
  • RAID 1. Les données sont toutes écrites en miroir sur deux disques distincts. Solution qui offre la meilleure fiabilité mais double le coût du stockage.
  • RAID 2. Les bits (plutôt que des octets ou des groupes d’octets) sont répartis sur plusieurs disques.
  • RAID 3. Les données sont réparties sur trois ou davantage de disques. Tous les disques travaillent en parallèle, ce qui assure une vitesse de transfert très élevée. Les bits de parité de parité permettent de reconstituer les données en cas de panne de l'un des disques physiques.
  • RAID 4. Similaire au Raid 3 mais chaque disque est géré indépendamment. Peu utilisé.
  • RAID 5. Le plus largement utilisé. Les données sont réparties sur trois ou davantage de disques afin d’augmenter les performances, et les bits de parité sont utilisés pour la tolérance aux pannes. Les bits de parité permettent de reconstituer les données en cas de panne de l'un des disques physiques.
  • RAID 6. Le plus fiable mais il est peu utilisé. Similaire à RAID 5, mais ici le contrôleur effectue les calculs de deux bits de parité différents, ou le même calcul sur deux sous-ensembles de données qui se chevauchent.
  • RAID 10. Combinaison de RAID 1 et RAID 0. RAID 0 est utilisé pour la performance et RAID 1 est utilisé pour la tolérance aux pannes.